To see the latest newsletter, click here .

lucidscience diy electronics

Greetings. Gather and decode data for your covert spy operations.

New projects include:

  • Phone number decoder 
  • GPS tracking device
  • GPS data receiver  

Hope to see you in the builders forum. 

Cheers, friends.

Find us on Facebook   Follow us on Twitter   Visit our blog   View our videos on YouTube

, , , , , , , , , , , , , , , ,

Change your voice over the phone in real time using a computer or digital processor.

Figure 0 - This black box allows routing effects through your phone system

This black box allows routing effects through your phone system

This project converts an old desktop telephone into a versatile audio mixing station that lets you route your telephone calls through an effects processor in order to create a state of the art voice changer. By using a real time computer voice filter or a professional quality effect box, you can change your voice in ways that will make you sound like a completely different person. You can make a man sound like a woman, or a girl sound like a man, or a man sound like an elderly lady, or any possible combination imaginable with results that will fool anyone.


Unlike those “spy toy” voice changers that make you sound like a funny cartoon, a real vocal effects unit or computer vocal filter will alter a voice in a perfectly convincing manner, allowing fine control over both the formant (gender) and the pitch of your voice. Sure, you can have a lot of fun with evil and chipmunk voices as well, but if you really want to mask your voice identity in a convincing manner then this useful device will allow you to connect any microphone compatible audio processing unit into your phone so you can alter your voice in real time.


There are many extremely powerful audio processing programs available for a computer that allow a person to alter his or her voice by talking into a microphone. Many of them are inexpensive or even free. Music stores also offer digital effect boxes that are designed for vocal processing, and these have the same functionality as the computer programs, but do their processing in a dedicated DSP (digital signal processor). I will be using both the computer software voice changer as well as the “effect box” version of the vocal processor to show how each one can be connected to the phone system using this project.
A loud and annoying alarm that will make telemarketers think twice about calling back!

Figure 0 - This little box will give those pesky telemarketers an earful of fun!
This little box will give those pesky telemarketers an earful of fun!

Why it is still legal for telemarketers to invade a person’s privacy baffles my mind! Here I am either trying to relax during dinner or busy with a soldering iron on a 144 pin FPGA and then right at the worst moment possible…rrrrrring! So, I drop whatever I was doing to go get the call and to my absolute disgust, it’s another spammer trying to sell me some useless product, or worse – an automated message telling me to “Hold on for an important message.” Can you imagine the nerve??! They so blatantly destroy MY peace and quiet to put ME on hold as if MY time is not nearly as important as the cheesy redirect they are about to spew into my already angry ears! Oh, did I mention that of all things in this life that I find annoying, phone spammers top my list?

This simple project will give those tele-spammers exactly what they are trying to give you – an earful of useless and highly annoying noise. “You’re mean, they are just doing their jobs.” Well, let me tell ya buddy, they can do some other job that doesn’t involve ticking me off otherwise they will become victims to whatever I decide to feed into my own phone line back at them! If you are like me and have no mercy for those who choose to invade your privacy, then this little box will be right up your alley as it sends a very loud warbling alarm sound back into your phone lines, giving the spammer an earful they won’t forget.

You can even adjust the tone quality from a steady police like siren to a belching screech that sounds like a robotic cat fight. Even though the spammers will probably continue to call you back regardless of being on those useless “Do Not Call” lists, you will at least have some enjoyment at their expense with this device.

Figure 1 - This standard phone cord has an RJ11 connector at one end
Figure 1 – This standard phone cord has an RJ11 connector at one end

This device can be made in two versions: one that jacks right into your home phone line for maximum volume level, and a portable unit that just feeds sound into the mouthpiece of any portable phone. The wired version is certainly the most effective version as it can deliver the sound to the spammer at a level you could not achieve by screaming into your phone. Because the Spammer Jammer feeds the audio signal directly into the phone line, it bypasses all audio conditioning circuitry in your phone handset and spews out the sound at the maximum volume possible. Having a direct phone line connection also means that it works on every phone in the house connected to that line.

If you are not afraid of the “Phone Police”, then you can hack into your phone line by simply cutting the end of any standard phone cable that includes an RJ11 connector at one end. This four conductor connector will be used to connect the Spammer Jammer into the phone line, so you need the RJ11 male jack at one end and bare wires at the other end.



motion activated spy camera


This project uses a heat sensing motion detector to trigger the shutter release button on a hacked digital camera so that high resolution images can be captured anytime a person or animal crosses in front of the motion sensing zone. By hacking into an old motion activated floodlight, the cost is kept to a minimal and based on a pre-existing system that is known to work well. This project converts the motion sensor for DC battery operation, allowing it to become portable and safe from high voltages.

Read more about this and other DIY electronics projects:  Lucid Science Electronics from the Fringe: Motion Activated Camera

sound activated spy camera

This simple project will add sound activated control to any digital camera by ending a time controlled pulse into a relay board that is connected to the dual stage camera shutter switch. The sound is picked up by a sensitive microphone and then fed into an operational amplifier set up as an adjustable comparator so that the sensitivity can be controlled. The level of sound activation can be adjusted to respond to very faint sounds such as voices or footsteps and also adjusted to only respond to loud sounds such as music or hand claps. As a security device, this project will allow a high resolution image to be captured in response to some type of nearby sound.

Read more about this and other DIY electronics projects:  Lucid Science Electronics from the Fringe: Sound Activated Camera – DIY electronics project

An adjustable timer that will continually focus and shoot images on a digital camera.
Figure 0 - This system will focus and shoot a photo at some repeating interval
This system will focus and shoot a photo at some repeating interval

This project will extend the “Hacked Camera Trigger” project, allowing a timer to control both the focus and shutter release functions on a digital camera at an adjustable rate. This method of repeating time delayed image taking is also referred to as a “time lapse photography”, and can be used to speed up time by piecing together hundreds of photos taken over the span of hours or even days. By first focusing the camera before the shot, the camera will be able to acquire moving targets with far fewer missed or blurry exposures. In this project, a timer feeds a 10 stage counter, allowing up to 10 individual control points, although only two are needed in order to control the camera relay interface.

By using the other eight digital output pins on the decade counter, several more cameras can be controlled, or more relays can be added to allow the controlling of various other electrical devices such as solenoids, alarms, lights, or even AC operated appliances. The rate of photo taking can be controlled by a variable resistor, and by altering the value of the timer capacitor, rates of several photos per second all the way down to single photos every hour can be set. This project assumes that you have previously built the “Hacked Camera Trigger” project, although you could certainly interface it to some other hardware as well.

Figure 1 - This is the relay interface that controls the camera shutter switch
Figure 1 – This is the relay interface that controls the camera shutter switch

The small board shown in Figure 1 is a previous project called “Camera Trigger Hack”, and it allows any electronic device to issue a focus and shoot command to the camera. I call this a hack because it requires removal of the original switch from the camera in order to hack into the two functions that control the focus and shoot signals on the cameras circuit board. You “may” be able to build this project without the previous project as long as your camera board will accept the 5 volt digital signals from the 4017 decade counter into the cameras board, but to be safe, this previous project adds a level of safety to ensure your camera will not be damaged by any external device or voltages.

, , , , , , , , , , , , , , , ,

night vision basics

Night vision is one of the most important factors when considering any kind of video operated spy gadget as this technology allows the viewer to see in complete darkness while the subject is completely unaware. Because infrared light (radiation) falls just below red on the visible light spectrum, making up the wavelengths from about 750 nanometers to about 1500 nanometers, this light cannot be seen by human eyes, but it can easily be seen by many video cameras, making it useful as a covert lighting method in night vision systems.

Read more: Invisible Light Basics DIY tutorial.

Figure 0 - This external controller allows any device to control the shutter release
This external controller allows any device to control the shutter release

There are times when you need to acquire a very high resolution image, triggered by some external event such as movement, time, or computer control. Video security cameras are very limited in resolution, often to less than 640 x 480 pixels, which in digital camera terms is less than half of one megapixel.

Nowadays, a small digital camera that can take an image with a resolution of 4000 x 3000 pixels can be purchased for mere pocket change, so even if your subject is a long distance from the camera, the details will still be present in the image when zoomed on a computer screen. This simple project demonstrates how to hack into the camera’s shutter release button to add some kind of external control to allow automated picture taking.

Because this project is a hardware hack, you should not try this with a good camera, or one that you are worried about breaking. There is always a possibility of destruction when cracking the case open on such a small electronic device that is jammed full of tiny components. Of course, if you are good with small tools and a soldering iron, then this hack is fairly easy to do as long as you can find away to open the cover on your donor camera.

Once completed, the resulting relay controller will allow any external electronic device to focus and then take a photo, essentially duplicating the operation of the two position shutter release trigger on your camera. Also, note that your camera will not be usable for regular photography after this hack as the original shutter release switch will be removed.

Figure 1 - This camera will be converted for external shutter control
Figure 1 – This camera will be converted for external shutter control

The sacrificial camera shown in Figure 1 is an HP Photosmart M547 digital camera with an 8 megapixel imaging system. This camera has been around the world and dropped in an ocean, but despite some dents and scratches it still functions perfectly, so it will begin a new life as a covert spy gadget. To open one of these small digital cameras, you will need a set of tiny screwdrivers, a small knife and a whole lot of patience. Since the goal of manufacturing is to keep costs to a minimum, the cases on these cameras are often snapped together, which will require some careful prying to open them up.
Figure 0 - A long range infrared illuminator can be made using many LEDs
A long range infrared illuminator can be made using many LEDs

There are times when the small infrared LED ring built into a security camera will not cover the range or field of view you require, so you will need to find another invisible light source. Some large infrared illuminators use powerful incandescent light sources that are passed through an infrared pass filter, causing only the infrared component of the light to come through the filter. These types of infrared illuminators create intense heat due to the fact that the white light source must be fully enclosed and burn the unwanted light energy off as radiated heat. Because of this intense heat, incandescent filtered illuminators cannot be used indoors and may not be suitable for many outdoor installations.

The good news is that LEDs can be used to create a very powerful infrared illumination system if you use enough of them. Ok, you need a lot of them, but these days they can be purchased for only pennies a piece if ordered in quantities of hundreds or more. The bad news is that you will need to do a lot of soldering, even on a small array of 16 by 16 LEDs, which will have more than 512 connection points.

Of course, many circuit board houses offer proto service and you could have a very large LED array circuit board made for under $100 if you shop around. If you are patient and like to solder, then any size array can be made on some perforated circuit board, resulting in a very high power illumination system that will only cost you 1/10th of what a manufactured unit would cost.


Figure 1 - LEDs purchased in large quantities can often be found at bargain prices
Figure 1 – LEDs purchased in large quantities can often be found at bargain prices

Before you decide on making a huge array that will light up an entire city block, do a little research on bulk LED prices and power requirements because an array will become hungry on both counts. I built two version of the LED array – one using a hand wired perforated board having 13×19 LEDs and a much larger PCB version having 32×48 LEDs. So the smaller LED array has 247 LEDs and the larger array has a whopping 1526 LEDs! Make no mistake – it takes a good chunk of power to crank up 1526 LEDs to their maximum potential, and even at 10 cents per LED, that adds up to $154 just for the LEDs.

Start by calculating how much infrared radiation you will need in order to light your scene. Limitations will likely be the focal range of your camera since details are lost on most security cameras after about 50 feet. This distance is also about as far as an LED can reach, no matter how many you add to the array, so the equation then becomes how wide and how bright do you need the scene? A 20 foot by 20 foot interior room will shine like mid-day with an array of 16×16 LEDs at each corner of the room, but the massive array I built is almost too bright to be used indoors.

If your camera will stay in a fixed position, then a single array is best, but for general room illumination, it is better to divide up your LEDs into two or more arrays for even lighting. Think of a 16×16 LED array to be about the same as a typical hand held flashlight for both output power and field of view. My 32×48 array acts more like a 500 watt halogen light source when placed in a small room.

There are several varieties of infrared LEDs, ranging in size, field of view, output power, and effective light color. The most commonly used infrared LEDs output 940 nanometer infrared light which is far beyond the human visual range, and fairly detectable by any non filtered video camera. There are also infrared LEDs available for the 800 to 900 nanometer range. These are even better for use in night vision applications, but there will be slightly detectable red glow as the human eye can faintly detect this band of light.

If you have seen an outdoor night vision security camera after dark, then you are probably familiar with this dull red glow. The LEDs shown in Figure 1 are commonly available 940 nanometer types purchased in bulk from an Internet based supplier.

Experiments using high power infrared laser diodes and modules for night vision illumination.
Figure 0 - Build a long range laser night vision illuminator
Build a long range laser night vision illuminator
Infrared LEDs are the most widely used source of infrared radiation for night vision illuminators because they are inexpensive, easy to connect, and possess no safety hazards because they are human eye safe and do not radiate much heat.

The drawback to LED based night vision illumination systems is that they are not really useable at distances of more than 100 feet no matter how many LEDs you use in the array. Filter based night vision illuminators that change visible light into infrared light are capable for much greater distances, but they suffer from huge energy losses due to massive heating of the filter material and because of this, require massive amounts of current and are only suitable for outdoor use. A laser on the other hand, is capable of extremely long distance illumination and is probably the most energy efficient source of bright light possible.

The main problem with using infrared lasers to create night vision illuminations systems is that there are safety issues that must be addressed, especially when using lasers with a rating higher than Class IIIa, or lasers that have an output power of more than 5mW (milliwatts). Class IIIb and Class IV lasers can output as much as 500 mW, and they are certainly not eye safe, especially when highly focused. A laser that outputs only 50 mW may seem like nothing, but be aware that instant eye damage could occur if you hit your retina with a focused beam. Using infrared lasers makes this situation so much more dangerous because you cannot see the beam, and your blink reflex will not help save your vision in the event of an accidental exposure to the laser beam.

Do not continue with any of these experiments unless you are well aware of the dangers involved and have proper laser safety equipment and experience in using higher powered lasers. You can still create a useable short range laser illuminator using a lower power 5mW infrared laser diode or module, so consider starting with a Class IIIa laser if you want to experiment with laser night vision illumination.

, , , , , , , , , , , , , , , ,